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Abstract
Direct Preference Optimization (DPO) is a widely
used method for aligning language models to hu-
man preferences in an offline, supervised manner.
However, DPO often suffers from alignment tax,
where the aligned model forgets critical knowl-
edge from the initial supervised fine-tuned (SFT)
policy. In this work, we empirically identify a
direct relationship between alignment tax and re-
ductions in the log-likelihood of winning sam-
ples. To address this issue, we propose Orthogo-
nal Gradient Descent (OGD), a novel approach
that aligns models to preferences with minimal
forgetting. OGD employs projected gradient de-
scent to increase the log-likelihood of winning
samples while decreasing or maintaining the log-
likelihood of rejected ones. Unlike DPO, OGD
requires no additional hyper-parameters and can
function without access to the original SFT policy.
Experiments show that OGD is able to learn the
preference reward comparable to DPO (β = 0.1),
while reducing forgetting by up to 99.15%. These
findings highlight OGD’s potential as a robust
method for AI alignment, especially in critical
domains like healthcare and legal systems, where
preserving foundational knowledge is essential.

1. Introduction
Aligning language model (LM) to human preferences has
been demonstrated to be effective in various applications
(Stiennon et al., 2020; Ouyang et al., 2022). Direct Prefer-
ence Optimization (Rafailov et al. 2023; DPO) has been
widely used as a method of directly aligning LMs in an
offline supervised fashion (Bai et al., 2023; Ivison et al.,
2023; Tunstall et al., 2023).

DPO trains a LM to maximize the log-likelihood margin
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Figure 1. An illustration of the policy’s trajectory in the parametric
space during alignment training. While the DPO model follows the
red path where the likelihood of both the preferred and dispreferred
responses decrease, our proposed method follows the blue path
which increases the preferred response likelihood while decreasing
the dispreferred responses’ likelihood. This mitigates forgetting of
knowledge contained in the preferred responses.

between the preferred and dispreferred1 responses (Rafailov
et al., 2024b). Intuitively, one may expect that DPO in-
creases the log-likelihood of the preferred response yw while
decreasing the log-likelihood of the dispreferred response yl.
However, various recent works have reported the likelihood
displacement phenomena (Razin et al., 2024) in which DPO
training causes the model to decrease the log-likelihood of
yw, while increasing the log-likelihood margin (Pal et al.,
2024; Rafailov et al., 2024a; Yuan et al., 2024b; Tajwar
et al., 2024; Pang et al., 2024; Liu et al., 2024b). While
there has been conflicting viewpoints regarding the favor-
ableness of this phenomena, there lacks understanding in
exactly what kind of real-life side-effects it entails when
the log-likelihood of yw decreases throughout the training
process.

In this paper, we first empirically show that the decrease in
the log-likelihood of yw directly correlates to alignment tax.
We measure the aligned policy’s accuracy degradation in
various benchmarks, with respect to its initial SFT policy
under different training settings. We observe a clear trend
between the log-likelihood of yw and the degree of overall

1We use the term ’winning’, ’chosen’, and ’preferred’ inter-
changably.
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performance degradation. Next, we present Orthogonal
Gradient Descent (OGD), a projected gradient descent
method that trains a model to increase the log-likelihood of
yw, while maintaining or decreasing the log-likelihood of yl.
We demonstrate the effectiveness of OGD on two preference
datasets (Xu et al., 2024b) using Mistral-7B-v0.3. Ex-
perimental results suggest that OGD can align a LM to hu-
man preferences comparable to DPO, while significantly
reducing forgetting by up to 99.15%.

Our contribution is as follows:

• We demonstrate that the decrease in the log-likelihood
of yw directly correlates to an increased alignment tax
(Forgetting).

• We present Orthogonal Gradient Descent (OGD),
which increases the winning responses’ log-likelihood
while decreasing or maintaining the rejected responses’
log-likelihood.

• OGD does not introduce any new hyper-parameters
and does not require the reference policy. OGD also
does not require the strict pairing between the chosen
and rejected responses.

• We demonstrate that OGD can align a LM to human
preferences comparable to DPO, while exhibiting sig-
nificantly less alignment tax.

2. Related Work
2.1. Reinforcement Learning from Human Feedback

Reinforcement Learning from Human Feedback (RLHF)
(Ouyang et al., 2022) has become a popular method for
aligning LMs to human preferences. In general, RLHF’s
training process consists of three phases: Supervised Fine-
tuning (SFT), reward model (RM) training, and policy opti-
mization to maximize the KL-regularized reward, typically
using PPO (Schulman et al., 2017). Despite its success
in various domains (Chaudhari et al., 2024; Wang et al.,
2024b; Bai et al., 2022), the requirement of RM training
complicates the training process, with the addition of care-
ful hyper-parameter training and increased computational
costs.

2.2. Direct Preference Optimization

Direct Preference Optimization (DPO) presents a simple, yet
effective alternative to RLHF. By identifying a mapping be-
tween a language model and an implicit reward model, DPO
proposes to directly minimize the KL-divergence between
the empirical preference distribution and the implicit RM
represented by the policy. This simplifies the overall RLHF
process by eliminating the RM training step, and DPO has

been widely adopted as a method for directly training a LM
to learn human preferences (Bai et al., 2023; Ivison et al.,
2023; Tunstall et al., 2023).

With increasing attempts to apply DPO in various domains,
various recent works have also reported the likelihood-
displacement phenomena (Razin et al., 2024) in which the
policy decreases the log-likelihood of yw throughout the
training process. This inspired research on understanding
the underlying cause of such phenomena (Razin et al., 2024;
Tajwar et al., 2024; Pal et al., 2024; Rafailov et al., 2024a;
Feng et al., 2024; Yuan et al., 2024a), where notably Razin
et al. identified the gradient condition for which likelihood-
displacement occurs.

The research community has seen conflicting perspectives
on how this phenomena should be addressed; One line of
research (Rafailov et al., 2024a; Shi et al., 2024) argued that
such phenomena are a natural consequence of DPO, while
another line of research (Pal et al., 2024; Feng et al., 2024;
Yuan et al., 2024a) viewed it as a failure mode and attempted
to mitigate it. Most notably, several recent works (Pal et al.,
2024; Yuan et al., 2024b; Pang et al., 2024; Meng et al.,
2024) have observed the phenomena where DPO training
leads to degradation in math and reasoning benchmarks, for
which Razin et al. has viewed it as an instance of the catas-
trophic likelihood displacement phenomena. Other works
(Razin et al., 2024; Yuan et al., 2024a) have also argued
that likelihood displacement itself can hinder the process
of properly learning the preference distribution. However,
such works were often validated in simplified and synthetic
preference datasets. Our work expands upon this view by in-
vestigating the relationship between likelihood displacement
and forgetting in real-world resembling complex instruction
preference datasets (Cui et al., 2023; Xu et al., 2024b).

2.3. Alignment Tax

Efforts to reduce forgetting during alignment of LMs has
been an active field of research. Often recognized as the
alignment tax phenomena (Ouyang et al., 2022), there has
been numerous reports where aligning LMs to human pref-
erences lead to degraded performance on other downstream
tasks (Pal et al., 2024; Yuan et al., 2024b; Pang et al., 2024;
Meng et al., 2024). This is crucial for real-life applications
of LMs in domains where forgetting pre-trained knowledge
can lead to critical consequences, such as medical domains.

While previous works have studied ways to reduce align-
ment tax, several short-comings has remained. First, works
either relied on the assumption that pre-training data is avail-
able (Ouyang et al., 2022), or relied on resource intensive
methods, such as weight merging where one needs to train
multiple models and carefully adjust the merging hyper-
parameters (Lu et al., 2024; Lin et al., 2023; Fu et al., 2024).
Our work aims to address the alignment tax problem in
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Figure 2. Comparison between the decrease in log-likelihood of yw with the overall accuracy degradation in various downstream tasks
(TAX(·)). We train Mistral-7B-v0.3 on the Magpie-Pro preference dataset using DPO with β ∈ {0.2, 0.1, 0.05, 0.02} for 5
epochs. The model with the most decreased log-likelihood of yw exhibits the most severe degree of forgetting.

a model-agnostic manner, without relying on any weight-
merging based methods or data augmentation techniques.

2.4. Continual Learning

Our work proposes Orthogonal Gradient Descent (OGD)
for addressing alignment tax. A methodology proposed
under the same name in (Farajtabar et al., 2020) attempts
to mitigate catastrophic forgetting by updating the model’s
parameters in the direction of not increasing the loss of the
previous task. OGD can be understood as a projected gra-
dient descent based method (Rosen, 1960) that mitigates
forgetting during preference optimization of language mod-
els. In particular, we realize that the conventional two-step
SFT training and preference optimization pipeline can be
viewed as a continual learning setup. As such, we aim to
mitigate forgetting of the SFT model’s knowledge by forc-
ing the preference optimization step to decrease the negative
log-likelihood loss of yw. Our method differs from (Fara-
jtabar et al., 2020) by utilizing the mini-batch gradients on
the fly instead of using instance-wise gradients, due to the
intensive memory requirements of training LMs. Most no-
tably, instead of treating the constraint as a regularization
method for alleviating forgetting as in conventional contin-
ual learning works (Li & Hoiem, 2017; Kirkpatrick et al.,
2017; Farajtabar et al., 2019; Saha et al., 2021; Lin et al.,
2022), we flip the constraint’s role to increase the negative
log-likelihood loss of yl. We show that this allows policies
to provably optimize a large class of direct alignment loss
functions (Gheshlaghi Azar et al., 2023), even without intro-
ducing new hyper-parameters or utilizing a reference SFT
policy.

3. Preliminaries
In this section, we investigate the relation between
likelihood-displacement and alignment tax. To measure
alignment tax, we utilize the metric TAX(·) which com-
putes the average percentage drop in accuracy over several
benchmarks with respect to its initial SFT policy. For an
aligned policy θ and its initial policy θSFT, we measure its
degree of performance degradation for some task Ti by
100 ×min(0, Ti(θ)−Ti(θSFT)

Ti(θSFT)
)[%], where Ti(θ) denotes the

accuracy of LM θ on task Ti. For a collection of tasks
T = {T1, T2, ...} we measure the average degradation to
compute TAX(θ) = 100

|T |ΣTi∈T min(0, Ti(θ)−Ti(θSFT)
Ti(θSFT)

)[%].
Its upper-bound is 0%, indicating no alignment tax has oc-
curred, and has a lower bound of -100%, where the aligned
policy has achieved 0% accuracy across all tasks. We com-
pute TAX(·) in a zero-shot manner for a total of 8 multi-
choice QA benchmarks: (A) Commonsense QA: PIQA
(Bisk et al., 2020), SIQA (Sap et al., 2019), HellaSwag
(Zellers et al., 2019), ARC-Easy and ARC-Challenge (Clark
et al., 2018), (B) Knowledge: MMLU (Hendrycks et al.,
2020), (C) Math: GSM8k (Cobbe et al., 2021), and (D)
Reading Comprehension: BoolQ (Clark et al., 2019).

We train Mistral-7B-v0.3 (Albert Jiang, 2024) on the
Magpie-Pro2 (Xu et al., 2024b; Wang et al., 2024a) pref-
erence dataset using the DPO objective with various β ∈
{0.2, 0.1, 0.05, 0.02} values for 5 epochs. See appendix for
further training details. We plot the log-likelihood of yw and
TAX(·) at Figure 2. We are able to observe an overall trend
between the log-likelihood of yw and TAX(·). In particular,
the more the log-likelihood of yw decreases, the more the
TAX(·) metric drops. We hypothesize that the decrease in

2Dataset available at Magpie-Align/Magpie-Llama-3.1-Pro-
DPO-100K-v0.1
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the log-likelihood of yw encourages the model to forget the
factual knowledge contained in yw.

4. Method
The findings of section 3 motivate a method for aligning
language models without decreasing the log-likelihood of
yw. In this section, we present Orthogonal Gradient Descent
(OGD), a projected gradient descent based method that can
optimize the DPO loss without decreasing the log-likelihood
of yw.

Orthogonal Gradient Descent (OGD) is based on the fol-
lowing simple intuition: If decreasing the negative log-
likelihood (NLL) loss of yw increases the NLL loss of yl,
we can simply perform gradient descent on the NLL loss
of yw. On the other hand, if decreasing the NLL loss of yw
decreases the NLL loss of yl too, we update the parameters
in such a way that we decrease only the NLL loss of yw,
while maintaining the NLL loss of yl. In particular, we up-
date the model parameters in the direction of the orthogonal
projection of the preferred responses’ gradient against the
dispreferred responses’ gradient. This direction is acute to
the winning samples’ gradient, forming a descent direction
for the winning samples’ NLL loss. Meanwhile, this up-
date direction is orthogonal to the losing samples gradient,
and thus ensures that the losing samples’ NLL loss doesn’t
change, in principle.

Consider a batch of M training samples D =

{x(i), y
(i)
w , y

(i)
l }Mi=1 where y

(i)
w , y

(i)
l are the preferred and

dispreferred completions on the prompt x(i). Assuming
standard NLL loss L(·), we denote the gradient of win-
ning samples ∇L(yw) = 1

MΣM
i=1∇θL(y

(i)
w |x(i)) and the

losing samples ∇L(yl) = 1
MΣM

i=1∇θL(y
(i)
l |x(i)). The

first case, in which decreasing the NLL loss of winning
samples increases the NLL loss of losing samples, corre-
sponds to the gradient condition: ∇L(yw) · ∇L(yl) < 0.
In such cases we simply update θ in the direction of
−∇L(yw). Otherwise, if we have ∇L(yw) · ∇L(yl) ≥ 0,
we update θ in the direction of the orthogonal projection
−(∇L(yw)− ∇L(yw)·∇L(yl)

||∇L(yl)||22
∇L(yl)).

This leads to the following parameter update rule of OGD.

Definition 4.1. OGD: θk+1 = θk − η(∇L(yw) −
α

||∇L(yl)||22
∇L(yl)), where θk denotes the policy at train-

ing step k, η > 0 denotes the learning rate, and α =
max(0,∇L(yw) · ∇L(yl)).

In practice, when using an optimizer (e.g., Adam (Kingma &
Ba, 2015), RMSprop (Tieleman & Hinton, 2012), etc.), we
set the parameters’ gradient as ∇L(yw)− α

||∇L(yl)||22
∇L(yl)

and update its parameters following the optimizer’s algo-
rithm. Similarly, when applying gradient-clipping, we clip

the L2 norm of ∇L(yw)− α
||∇L(yl)||22

∇L(yl).

5. Theoretical Analysis
In this section, we analyze the theoretical properties of OGD.
Without any introduction of new hyper-parameters, OGD
provably increases the log-likelihood of yw, while provably
decreasing or maintaining the log-likelihood of yl. This
further allows the model to learn human preferences repre-
sented by a general family of offline preference optimization
methods (Tang et al., 2024).

Definition 5.1. For some function f : RD → R, and a point
θ ∈ RD, a direction ∆θ ∈ RD is called a descent direction
if there exists ᾱ > 0 such that f(θ + α∆θ) < f(θ),∀α ∈
(0, ᾱ).

The following well-known lemma allows one to easily verify
whether a direction is a descent direction by computing its
dot product with the gradient of the function.

Lemma 5.2. Consider a point θ ∈ RD. Any direction
∆θ ∈ RD satisfying ∆θ · ∇f(θ) < 0 is a descent direction.

Many existing offline preference optimization methods can
be characterized by solving the following objective (Tang
et al., 2024):

argmin
θ

E(yw,yl)∼µ[f(β · (log πθ(yw)

πref(yw)
− log

πθ(yl)

πref(yl)
))]

where f denotes any valid supervised binary classification
loss function (Hastie, 2009).

We now analyze the properties of the update direc-
tion of OGD: ∆θ = θk+1 − θk = −η{∇L(yw) −
max(0,∇L(yw)·∇L(yl))

||∇L(yl)||22
∇L(yl)}. The following theorem

states that OGD increases the log-likelihood of yw.

Theorem 5.3. ∆θ is a descent direction of the negative log-
likelihood of the preferred responses 1

MΣM
i=1L(y

(i)
w |x(i))

Proof. See A.1.1. In a nutshell, regardless of the sign value
of ∇L(yw) · ∇L(yl), we can show that ∆θ · ∇L(yw) <
0.

Conversely, we can show that OGD decreases or maintains
the log-likelihood of yl.

Theorem 5.4. ∆θ is not a descent direction of the
negative log-likelihood of the dispreferred responses:
1
MΣM

i=1L(y
(i)
l |x(i))

Proof. ∆θ · ∇L(yl) = −η{∇L(yw) · ∇L(yl) −
max(0,∇L(yw) · ∇L(yl))} ≥ 0 In other words, ∆θ is
either an ascent direction or orthogonal to the log-likelihood
of the dispreferred responses yl.

4
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As a consequence of 5.3 and 5.4, OGD is able to train a
policy to learn the KL-regularized Bradley-Terry preference
reward by optimizing various direct preference optimization
objectives.

Corollary 5.5. For any valid supervised binary classifica-
tion loss function f with f ′(·) < 0, ∆θ is a descent direction
to the loss f(β · (log πθ(yw)

πref(yw) − log πθ(yl)
πref(yl)

)) where β > 0.

Proof. See A.1.2.

Meanwhile, we note that OGD can be considered as a hyper-
parameter free variant of the unlikelihood training method
(Welleck et al., 2019). In particular, OGD can be seen as dy-
namically adjusting the unlikelihood coefficient according to
the arrangement of the log-likelihood gradients. Under this
perspective, OGD can be understood as performing some
form of knowledge unlearning (Jang et al., 2023), where the
policy unlearns the knowledge required to generate yl while
retaining the knowledge contained in yw.

It is worth mentioning the implicit assumptions that the
aforementioned theoretical properties rely on. First, Lemma
5.2 assumes that the first-order Taylor’s approximation
holds. Thus, taking a step size that violates this condition
may not guarantee Theorem 5.4 and 5.3. In addition, both
theorems assume the usage of full-batch gradients, which is
not the case in conventional training setups. Utilizing mini-
batch gradients may not ensure the proper optimization of
the log-likelihoods of yw and yl outside the mini-batch. Fi-
nally, the usage of modern optimizers (Kingma & Ba, 2015;
Tieleman & Hinton, 2012) that modify the parameter update
direction may not guarantee the statements of Theorem 5.4
and 5.3. However, we demonstrate in Section 6 that OGD
can successfully optimize the respective log-likelihoods and
the DPO loss in realistic training settings, using stochastic
mini-batch gradients and the RMSprop optimizer (Tieleman
& Hinton, 2012).

Overall, OGD is a method which can provably optimize a
general class of supervised direct alignment loss functions,
without any new additional hyper-parameters. In addition,
OGD does not require the reference SFT policy, similar to
(Hong et al., 2024; Meng et al., 2024; Zhao et al., 2023b).
As with (Ethayarajh et al., 2024; Mao et al., 2024), our
method doesn’t require the strict pairing between the pre-
ferred and dispreferred responses. Most importantly, OGD
fits well with previous theoretical frameworks for learning
prefernces, as OGD can provably optimize a wide class of
direct preference optimization loss objectives (Tang et al.,
2024).

6. Experiments
We empirically demonstrate that OGD is very effective in
mitigating alignment tax, by simply changing the parameter
update direction without any careful data-augmentation or
complex weight merging techniques. In particular, we show
that OGD is able to learn preferences comparable to that of
DPO, while exhibiting significantly less alignment tax.

We mainly utilize the DPO loss with varying KL-
regularization strengths β ∈ {0.2, 0.1, 0.05, 0.02} as the
baseline methods. Despite works exploring variants of
DPO (Liu et al., 2024a; Hong et al., 2024; Ethayarajh et al.,
2024; Meng et al., 2024; Xu et al., 2024a; Gheshlaghi Azar
et al., 2023), the original DPO (Rafailov et al., 2024b) ob-
jective remains the standard training objective for train-
ing LMs to directly learn preferences (Dubey et al., 2024;
Jiang et al., 2024; Tunstall et al., 2023). In addition, it
has been suggested in (Tang et al., 2024) that varying the
β KL-regularization strength is more influential to the fi-
nal performance than changing the training objective (e.g.,
IPO, cDPO, ORPO, etc.). Due to non-negligible training
and evaluation costs, we mainly consider varying the KL-
regularization strength and early-stopping as the baseline
methods.

We evaluate our method on two high-
quality preference datasets (Magpie-Pro and
Magpie-Air-Gemma27B3) using an open-source
language model Mistral-7B-v0.3. To measure the
preference reward learnability, we utilize two LLM-As-a-
Judge benchmarks (Lin et al., 2024; Tianle Li*, 2024). In
particular, we define that model A is able to learn prefer-
ences comparable to model B when A either outperforms
B or has an overlap between its 95% confidence intervals.
To compare the degree of forgetting, we utilize the TAX(·)
metric using the same multi-choice QA benchmarks in
Section 3. See Appendix A.2 for specific experimental
details.

We summarize our results on Table 5. OGD consistently
learns the preference reward comparable to the best perform-
ing DPO models, while paying significantly less alignment
tax. In particular, the 95% confidence interval on the Wild-
Bench benchmark overlaps between OGD and the best per-
forming DPO trained models. Meanwhile, OGD alleviates
forgetting, up to 99.15% of that of DPO (β = 0.1) on the
Magpie-Pro preference dataset.

We track the change in TAX(·) at each epoch for all training
configurations in Figure 3. OGD consistently exhibits sig-
nificantly less forgetting compared to DPO trained models.
At the last fifth epoch, OGD consistently ranks as the best
model in alleviating forgetting. On average, OGD is able to

3Dataset available at https://huggingface.co/
datasets/yjwon/Magpie-Air-Gemma2-DPO-100K
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Table 1. Overall evaluation results for Section 6. We specify the 95% confidence interval inside the parenthesis for the Arena-Hard and
Wild-Bench benchmark performances. Overall, OGD is able to learn the preference reward comparable to the best DPO trained models,
while paying significantly less alignment tax.

Method Best
Epoch

Arena-Hard
SC Win-Rate

Wild-Bench v0.2
ELO Score

TAX(·)

Mistral-7B-v0.3 on the Magpie-Air-Gemma27B dataset
DPO (β = 0.2) 3 30.2 (27.82, 32.3) 1134.79 (1121.15, 1146.72) -12.7355%
DPO (β = 0.1) 4 30.5 (28.44, 32.67) 1136.45 (1124.85, 1147.87) -19.4960%
DPO (β = 0.05) 1 32.6 (31.13, 35.11) 1142.00 (1127.45, 1153.95) -12.5871%
DPO (β = 0.02) 1 30.9 (29.1, 32.74) 1132.48 (1119.39, 1149.92) -19.1050%
OGD (Ours) 5 27.1 (24.56, 29.18) 1122.92 (1111.20, 1135.67) -2.6340%

Mistral-7B-v0.3 on the Magpie-Pro dataset
DPO (β = 0.2) 1 23.8 (22.02, 25.55) 1142.27 (1131.90, 1152.78) -14.6284%
DPO (β = 0.1) 1 26.8 (24.98, 28.81) 1138.75 (1127.15, 1151.52) -19.2612%
DPO (β = 0.05) 1 27.4 (25.49, 29.56) 1141.01 (1128.93, 1151.62) -22.6019%
DPO (β = 0.02) 1 27.2 (24.9, 28.96) 1138.17 (1122.19, 1152.72) -23.3374%
OGD (Ours) 5 26 (24.03, 28.26) 1124.37 (1108.08, 1137.55) -0.1638%

Figure 3. Change in TAX(·) at each epoch. A point closer to 0% indicates less forgetting has occurred. Overall, OGD consistently exhibits
significantly less forgetting compared to other baseline methods.

reduce forgetting by 92.82% of that of DPO (β = 0.1) at
epoch 5.

7. Discussion
7.1. Why is OGD effective at alleviating forgetting?

OGD trained models consistently exhibit significantly less
forgetting compared to DPO trained models. Comparing
Figure 4 and 5, we find that the primary difference between
DPO and OGD is the change in the log-likelihood of yw.
Consequently, we hypothesize that the increase of the log-
likelihood of yw allows the model to retain the knowledge
contained in the yw. This aligns with the observation made

in (Shi et al., 2024) in which ”higher likelihood correlates
with better memorisation of factual knowledge patterns”.
As acknowledged in Section 2.4, OGD can be viewed as
a continual learning method that aims to retain the knowl-
edge seen during the previous SFT phase. Therefore, as
long as yw offers sufficient coverage of factual knowledge,
we hypothesize that OGD can show strong performance in
alleviating forgetting.

7.2. Does OGD work in realistic training settings?

The properties of OGD mentioned in Section 5 can be sum-
marized as the following:
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Figure 4. Log-likelihood change for OGD across all experimental configurations. Overall, OGD consistently increases the log-likelihood
of yw, while decreasing or maintaining the log-likelihood of yl.

Figure 5. Log-likelihood change of yw for DPO across all experimental configurations.

• OGD increases the log-likelihood of yw.

• OGD either decreases or maintains the log-likelihood
of yl.

• OGD can optimize a wide class of offline preference
optimization objectives, including the DPO loss.

However, as noted in Section 5, these are not guaranteed
when utilizing stochastic mini-batch gradients and non-SGD
optimizers (e.g., Adam, RMSprop, etc.) We demonstrate
that OGD can satisfy these properties even in realistic train-
ing setting. The experiments in Section 6 were conducted
using batch size of 64 and RMSprop optimizer with learning

rate 1e-6. Under such settings, Figure 4 shows that OGD
can optimize the respective log-likelihoods for all experi-
ments. Furthermore, Figure 6 demonstrates that OGD can
successfully optimize the DPO loss with β = 0.1. This
suggests that the properties of OGD listed above holds in
realistic training settings, too.

8. Limitations and Future Works
Despite the strong empirical performance of OGD and favor-
able theoretical properties, there remains some limitations
of OGD that may be addressed in future works. First, OGD
requires an additional memory requirement proportional to

7
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Figure 6. DPO loss for OGD across all experimental configurations. The DPO loss is measured using β = 0.1. Overall, OGD is able to
optimize the DPO loss regardless of the dataset.

the size of the model’s parameters. This is due to the method
requiring the separate storage of ∇L(yw) and ∇L(yl). Fu-
ture works could explore combining parameter efficient
training methods (Hu et al., 2021; Dettmers et al., 2023;
Chavan et al., 2023) with OGD. However, it should also
be acknowledged that OGD doesn’t require the storage and
forward pass of the initial SFT policy, which is not the case
for DPO. Second, OGD relies on the assumption that the
yw contains sufficiently favorable responses. Since OGD
is designed to increase the log-likelihood of yw, if yw con-
tains suboptimal completions, the model may fail to learn
an optimal policy. Likewise, if yw fails to offer a sufficient
coverage of factual knowledge, OGD may overfit the model
on yw, forgetting knowledge not covered by yw. However,
it should also be noted that OGD can easily incorporate
mixing different training data, including paired preference
datasets and instruction tuning datasets without dispreferred
responses. This is because OGD does not assume the strict
pairing between the preferred and dispreferred responses.
Thus, future works can explore methods of mixing different
data to tackle overfitting on yw.

9. Conclusion
Forgetting pre-trained knowledge during AI alignment can
be critical in various knowledge-intensive domains (e.g.,
medical domains). In this paper, we have investigated the re-
lationship between the log-likelihood of preferred responses
and the degree of alignment tax (forgetting). Preliminary
experiments discussed in Section 3 suggest that decreasing
the log-likelihood of preferred responses leads to in-domain
forgetting, eventually leading to degraded downstream task

performances. We present a novel preference optimization
method, Orthogonal Gradient Descent (OGD), that increases
the log-likelihood of preferred responses, while decreasing
or maintaining the log-likelihood of dispreferred responses.
OGD enjoys several favorable theoretical properties, most
notably where it can also optimize a wide class of offline
preference optimization losses, including the DPO objective.
We demonstrate the effectiveness of OGD on two complex
preference datasets. Experimental results suggest that OGD
is able to learn the preference reward comparable to the best
performing DPO models, while exhibiting significantly less
forgetting. We hope that this work paves a new way for
effectively alleviating forgetting during AI alignment.
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A. Appendix
A.1. Proofs for Section 5

A.1.1. PROOF FOR THEOREM 5.3

Proof. Case 1: If we have ∇L(yw) · ∇L(yl) > 0, it follows that

∆θ · ∇L(yw) = −η{||∇L(yw)||22 −
∇L(yw) · ∇L(yl)

||∇L(yl)||22
∇L(yl) · ∇L(yw)}

= − η

||∇L(yl)||22
{||∇L(yw)||22 · ||∇L(yl)||22 − (∇L(yl) · ∇L(yw))

2} < 0

where the last inequality follows from the Cauchy-Schwarz inequality: ||∇L(yw)|| · ||∇L(yl)|| > ||∇L(yw) ·
∇L(yl)|| > 0

Case 2: Otherwise, we have ∇L(yw) · ∇L(yl) ≤ 0 and it follows that

∆θ · ∇L(yw) = −η||∇L(yw)||22 < 0

.

A.1.2. PROOF FOR COROLLARY 5.5

Proof.

∆θ · ∇f(β · (log πθ(yw)

πref(yw)
− log

πθ(yl)

πref(yl)
))

= ∆θ · {βf ′(β(log
πθ(yw)

πref(yw)
− log

πθ(yl)

πref(yl)
))(∇L(yw)−∇L(yl))}

= βf ′(β(log
πθ(yw)

πref(yw)
− log

πθ(yl)

πref(yl)
))(∆θ · ∇L(yw)−∆θ · ∇L(yl))

From Lemma 5.3, we have ∆θ · ∇L(yw) > 0, and from Lemma 5.4, we have ∆θ · ∇L(yl) ≤ 0. Thus, we have
(∆θ · ∇L(yw) − ∆θ · ∇L(yl)) > 0. Since β > 0 and βf ′(β(∆θ · ∇L(yw) − ∆θ · ∇L(yl))) < 0, it follows that
∆θ · ∇f(β · (log πθ(yw)

πref(yw) − log πθ(yl)
πref(yl)

)) < 0.

A.2. Experimental Setting

In this section, we list the specific setting for the experiments conducted in Section 6. Unless further specified, the following
hyper-parameters apply to all experiments.

We utilize the pre-trained base models instead of the instruction tuned versions to study the sole effects of the alignment
method. We only utilize the chat template offered by the official instruction tuned corresponding models. For the initial SFT
phase, we train the model for 1 epoch with effective batch size 256 using the Adam optimizer (Kingma & Ba, 2015) with
default β0, β1 values and weight decay value of 0. We utilize a constant 5e-6 learning rate schedule with a linear warm-up
for the first 10% training steps. The training objective consists of standard Cross Entropy Loss on the entire sequence
including the prompt and special chat template tokens. During the subsequent preference learning phase, we train for 5
epochs with effective batch size 64 using the RMSprop optimizer (Tieleman & Hinton, 2012) without any weight decay. We
employ a constant 1e-6 learning rate schedule with a linear warm-up of 150 steps. For all alignment methods, we compute
the loss on the completions only. We fix the seed to 0 for the SFT stage and 1 for the preference learning stage. We save the
model checkpoint every epoch, and all training is done in bfloat16 precision. We fix the prompt token sequence length
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to 2,048 and entire token sequence length to 4,096. We train all models including OGD on A100/H100 gpus using Pytorch
FSDP (Zhao et al., 2023a).

After training, we choose the best model based on the win-rate on the Arena-Hard benchmark using
gpt-4o-mini-2024-07-18 due to low evaluation costs. We report the final performance on Arena-Hard
using gpt-4-1106-preview as recommended in (Tianle Li*, 2024). For Wild-Bench v0.2, we utilize
gpt-4o-2024-08-06 as recommended in the official github repository4. During evaluation, we greedy decode a
response with maximum token length of 4,096 using vLLM (Kwon et al., 2023) as the inference engine. We evaluate TAX(·)
using the official lm-evaluation-harness library (Gao et al., 2024), with a minor modification to prefix the system
prompt message as the first sentence of the user query.

4https://github.com/allenai/WildBench
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