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ABSTRACT

This progress report concerns several tasks regarding metabolic
reaction prediction, namely, reaction direction prediction, miss-
ing metabolite prediction, and destination prediction. While, at
a glance, each task seems to require separate solutions, we no-
tice that these tasks all require the same fundamental knowledge,
understanding the underlying metabolic reaction equation (e.g.,
A+ B — C). We thus unify the three separate tasks into a single
next-token-prediction task, and approach the problem using a single
unified transformer decoder-only architecture. This enables param-
eter sharing between tasks, and also allows data augmentation
between tasks. Experimental results demonstrate the effectiveness
of our approach.

1 INTRODUCTION
The three tasks is defined as the following:

e Reaction Direction Prediction: Given a set of source and
destination metabolites, determine its reaction direction,
TRUE (—) or FALSE («—). The metabolites are described by
an unique id with a range of [0,3472]. Task performance is
evaluated by accuracy.

e Missing Metabolite Prediction: Given a set of source
and destination metabolites, determine the missing source
metabolite, listing top 10 candidates in the order of es-
timated likelihood. The metabolites are described by an
unique id range of [0,3470]. Evaluation is done using the
Hits@10 and MRR@10 (Mean Reciprocal Rank) metric.

e Destination Prediction: Given a set of source, determine
the set of destination metabolite. The metabolites are de-
scribed by an unique id range of [0,3472]. Evaluation is done
using the average precision, recall, and F1-Score metrics.

All three tasks involve 3,007 samples of training data. We tackle
the three tasks in a single-shot manner, formulating all three tasks
as a unified next-token-prediction task. The contributions of this
project are the following:

e Our proposed NTP is enables parameter sharing between
tasks, reducing the net computational requirement com-
pared to a naive approach of constructing a task-wise deep
neural network architecture.

e It also allows data augmentation between tasks, encourag-
ing cross-task knowledge transfer.

2 PROPOSED METHOD

The main motivation of our method is that all three tasks require
understanding the underlying metabolic reaction equation, namely
the form of A + B — C. Inspired by recent deep-learning based
approaches for modeling metabolic reactions [2], we use a single
decoder-only transformer architecture [6] to address all three tasks.

Jinho Park
Graduate School of AI, KAIST
Seoul, South Korea
binlepain178@kaist.ac.kr

Given a set of metabolite ids M = {0, ...,3472}, we are con-
cerned with the source metabolites S € M and destination metabo-
lites D c M. We define the sequence of source metabolites S =
[s0,51,...] wheres; € S is ordered by its value in ascending or-
der. Likewise, we define the sequence of destination metabolites
D = [dy, d1, ...] where d; € D. We also define a set of special tokens
as the following:

e < TASK_IDy >: A task descriptor ID indicating the first
task, the direction prediction task.

e < TASK_ID; >: A task descriptor ID indicating the second
task, the missing metabolite prediction task.

e < TASK_ID; >: A task descriptor ID indicating the last
task, the destination prediction task.

e < DELIMITER >: A delimiter that indicates the end of
sequence of source metabolites, and also indicates the start
of sequence of destination metabolites.

e < EOS >: An end-of-sequence token that indicates the end
of sequence of destination metabolites.

e <—>: A token indicating that the reaction direction is
TRUE ().

e <«>: A token indicating that the reaction direction is
FALSE («).

We train our transformer architecture 6 using standard cross-
entropy loss [1], where we define the target token to be predicted
as the following:

e Reaction Direction Prediction: Given a sequence of [<
TASK_IDqg >, 0, 51, ..., < DELIMITER >,dy, ds, ..., < EOS >
], predict the next target token, which is one of <—> or
<>,

e Missing Metabolite Prediction: Given a sequence of
[< TASK ID; >,s0,51,...< DELIMITER >, do,ds,..., <
EOS >], predict the next target token, which is an element
of S.

o Destination Prediction: Given a sequence of [< TASK_ID, >

, 80, S1, --» < DELIMITER >], predict the next sequence of
tokens [dy, dy, ..., < EOS >].

We also employ a data augmentation strategy. From the Reac-
tion Direction Prediction dataset, we generate three new datasets:

e (1) We switch the source metabolites and the destination
metabolites, and flip the reaction direction accordingly.

e (2) For each sequence with the TRUE reaction direction, we
randomly sample one source metabolite and augment the
Missing Metabolite Prediction dataset.

o (3) For each sequence with the TRUE reaction direction, we
utilize the destination metabolites to augment the Desti-
nation Prediction dataset.

From the Missing Metabolite Prediction dataset, we generate
three new datasets:



Table 1: Training results for Reaction Direction Prediction
task. Our NTP method significantly outperforms the baseline
methods. The last row reports the performance of a single
model trained on all three tasks at once with additional data
augmentation techniques.
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Table 3: Training results for Destination Prediction task. Our
NTP method significantly outperforms the baseline meth-
ods. The last row reports the performance of a single model
trained on all three tasks at once with additional data aug-
mentation techniques.

Method | Accuracy [%]

Random 50

Counting 67.29
NTP (Ours, w.o. Data Augmentation) 81.55

NTP (Ours, with Data Augmentation) 83.88

Table 2: Training results for Missing Metabolite Prediction
task. Our NTP method significantly outperforms the baseline
methods. The last row reports the performance of a single
model trained on all three tasks at once with additional data
augmentation techniques.

Method | Hits@10 [%] | MRR@10
Random Guessing 0.28 0.0007
Random Guessing based on Interactions 11.29 0.04
NTP (Ours, w.o. Data Augmentation) 47.6 0.41
NTP (Ours, with Data Augmentation) 47.29 0.40

® (1) For each source metabolite, we generate new data sam-
ples by considering the selected source metabolite as the
missing node.

e (2) From the training dataset, since we can combine the
missing node and the source metabolites and reconstruct
the original source metabolites, we utilize this to augment
the Reaction Direction Prediction dataset samples with
the TRUE reaction directions.

e (3) Likewise, we utilize the reconstructed source metabo-
lites to augment the Destination Prediction dataset.

From the Destination Prediction dataset, we generate two new
datasets:

e (1) Since we are provided with the source and destination
metabolites from the training dataset, we convert it to the
Reaction Direction Prediction dataset by labeling each
samples as the TRUE reaction direction.

e (2) Likewise, we sample one source metabolite and consider
it as the missing node to augment the Missing Metabolite
Prediction dataset.

By doing so, we effectively generate 21,139 new samples from the
original training dataset with 9,021 samples.

3 EXPERIMENTS

We implemented our method using Pytorch [4], using a gpt-2 [5]
architecture with the following configuration:

embd_pdrop = @, attn_pdrop = @, resid_pdrop = @
n_positions = 256

n_embd = 768, n_layer = 12, n_head = 12
activation_function = gelu_new

Method ‘ Avg. Precision [%] ‘ Avg. Recall [%] ‘ Avg. F1-Score [%]
Random Guessing 0.068 0.07 0.07
Random Guessing based on Interactions 4.69 4.30 4.16
NTP (Ours, w.o. Data Augmentation) 35.1 35 34.64
NTP (Ours, with Data Augmentation) 35.1 35.32 34.94

We train our model for 10 epochs using the AdamW optimizer
[3], with maximum learning rate 2e-5 linearly warmed up for the
first 10% steps, and decayed under a cosine scheduler.

We compare our method with the baselines described in the
assignment documentation, with an additional three different trans-
former models each separately trained on the training dataset of the
three tasks, without any data augmentation techniques. This allows
us to directly measure the effect of parameter sharing between
tasks, allowing cross-task knowledge transfer.

Table 1 shows the accuracy of each methods on the reaction pre-
diction prediction task. Table 2 shows the Hits10 and MRR10 of each
methods on the missing metabolite prediction task. Finally, Table 3
describes the average precision, recall, and F1-Score fo each meth-
ods on the destination prediction task. Our method significantly
outperforms the baseline methods provided by the assignment doc-
umentation. We also find that our method performs comparably
to the models separately trained on each tasks’ dataset without
any data augmentation techniques. While we could not observe
any significant cross-task knowledge transfer effects, we were able
to handle all three tasks using a single transformer architecture,
which performed comparably to training three different models on
each datasets.

4 CONCLUSIONS

The proposed method NTP enables approaching the three meta-
bolic reaction prediction tasks using a single unified transformer
architecture. It has the following advantages:

o It enables parameter sharing between tasks, reducing the
computational burden.

o It enables cross-task knowledge transfer, allowing data-
augmentation between different tasks.

Future research can investigate the effect of pre-training the em-
bedding layer with graph neural network training techniques. We
hope that our research paves way for investigating a foundational
model specialized for bio-chemical reaction tasks.
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